TeSys Switching

TeSys D, K 'S207' series Contactors for railway applications Catalogue 2019

TeSys Switching
 TeSys D, TeSys K contactors

Introduction

TeSys D, TeSys K contactors:
S207 series for railway applications

TeSys Switching
 TeSys D, TeSys K contactors

Introduction

Used in heating, lighting, door control, signaling, brake and air conditioning compressors, TeSys D and TeSys K S207 series contactors are designed for all railway power switching and controlling applications, while complying with the railway European standard EN45545 R22 HL3.

Schneider Electric
 load control solutions in the move

Introduction

TeSys D, TeSys K contactors: S207 series fully compliant with railway standards

Shocks, vibrations requirements, according CEI 61373 standard tests

- Category 1: body mounted
- Class B: cubicles, subassemblies, equipment and components mounted directly on or under the car body.

Fire, smoke requirements, according EN 45545-2 Part 2, DIN 5510-2

Certificates of conformity available on our website: www.se.com

European standard EN 45545-2

Published in 2013, this new standard replaces the former regulations for railway vehicles and applies to all countries in Europe.

Fire behavior of materials and components: the new European standard defines tighter requirements.

Thus, the material used in the components must provide compliant characteristics.

TeSys Switching
 TeSys D, TeSys K contactors

Contents

TeSys Switching	
	Page
Presentation	
TeSys D S207 series	6
TeSys K S207 series	7
References	
TeSys D S207 series	8
TeSys K S207 series	10
Technical Data for Designers	11
TeSys D S207 series	
Characteristics	12
Dimensions and schemes	16
TeSys K S207 series	
Characteristics	18
Dimensions and schemes	22

TeSys Switching
 TeSys D S207 - Contactors for railway applications

Introduction

TeSys D - S207 series

Now made of new material, fully EN 45545 R22 HL3 compliant, with unchanged commercial reference.

Contactor types, covered applications:

- AC-3, up to 95 Amps
- AC-1, up to 125 Amps
- control circuits, up to 10 Amps .

TeSys D, the highest choice for demanding or wide power range applications

Range of 139 contactors for motors (AC-3), resistive loads (AC-1), control circuits:

3P, 4P contactors:

- AC-3 ratings / 3 poles: $9,12,18,25,32,38,40,50,65,80,95$ A
- AC-1 ratings / 4 poles: 20, 25, 32, 40, 60,125 A
- 1 NO + 1 NC embedded auxiliary contact on all ratings (except on 60, 80, 125 A 4-pole contactors).

Contactors for control circuits:

- 5 NO or $3 \mathrm{NO}+2 \mathrm{NC}$
- 10 A

Common features:

- connection by lugs
- $24,72,96,110 \mathrm{~V}$ DC coils, standard, low consumption and wide range
- Coil supply range: up to 0.7 to 1.25 Uc.

Fully EN45545 R22 HL2

 compliant motor startersUp to 38 A AC-3, with TeSys D - S 207 associated to: > GV2P thermal magnetic circuit breakers

Please refer to catalogue 'TeSys Motor control and protection Components' for details.

TeSys Switching
 TeSys K S207 - Contactors for railway applications

Introduction

TeSys K - S207 series

New range of EN 45545 R22 HL3 compliant mini contactors:

- width: 45 mm
- height: 58 mm
- depth: 57 mm
- weight: 0.235 kg .

Contactor types, covered applications:

- AC-3, up to 12 Amps
- AC-1, up to 20 Amps
- control circuits, up to 10 Amps.

> Simple, robust, and compact,
> TeSys K is optimized for common applications

Range of 33 contactors for motors (AC-3), resistive loads (AC-1), control circuits:

3P, 4P contactors:

- AC-3 ratings / 3 poles: 6, 9, 12 A
- AC-1 rating / 4 poles: 20 A
- 1 NO or 1 NC embedded auxiliary contact

Contactors for control circuits:

- 4 NO or $2 \mathrm{NO}+2 \mathrm{NC}$ or $3 \mathrm{NO}+1 \mathrm{NC}$
-10 A

Common features:

- connection by lugs
- 24, 72, 110 V DC low consumption coils,
- Coil supply range: up to 0.7 to 1.3 Uc from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

See TeSys K S207 contactor selection tables for available combinations of features.

TeSys Switching
 TeSys D S207 - Contactors for railway applications

Product references

LC1D096••S207

LC1D406..S207 LC1D506..S207, LC1D656..S207

LC1D806..S207, LC1D956..S207

LC1D4000•6••S207

LC1D8000•6••S207

Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3$\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$							Rated operational current in AC-3 440 V up to	Instantaneous auxiliary contacts		Commercial refer Replace dots by (see chart below)	oil voltage code	Weight
$\begin{aligned} & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 415 \mathrm{~V} \end{aligned}$	$415 \mathrm{~V}$	440 V	500 V	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	1000 V		1		coil with surge suppressor	Coil without surge suppressor	
kW	A					kg						
2.2	4	4	4	5.5	5.5	-	9	1	1	LC1D096•*S207		0.320
3	5.5	5.5	5.5	7.5	7.5	-	12	1	1	LC1D126•*S207		0.325
4	7.5	9	9	10	10	-	18	1	1	LC1D186••S207		0.330
5.5	11	11	11	15	15	-	25	1	1	LC1D256•*S207		0.370
7.5	15	15	15	18.5	18.5	-	32	1	1	LC1D326••S207		0.375
9	18.5	18.5	18.5	18.5	18.5	-	38	1	1	LC1D386•*S207		0.380
11	18.5	22	22	22	30	22	40	1	1	-	LC1D406••S207	2.185
15	22	25	30	30	33	30	50	1	1	-	LC1D506••S207	2.185
18.5	30	37	37	37	37	37	65	1	1	-	LC1D656••S207	2.185
22	37	45	45	55	45	45	80	1	1	-	LC1D806••S207	2.59
$\underline{25}$	45	45	45	55	45	45	95	1	1	-	LC1D956••S207	2.61

(1) A suppressor diode (Transil TM) in parallel with the coil helps to prevent upstream sensitive components from damage by high transient voltage during the coil switching.

Coil voltage codes				
DC Volts	24	72	96	110
Standard coils for LC1D096 ... D386, LC1DT206...DT406, LC1D2586				
U 0.7...1.25 Uc	BD	SD	-	FD
Low consumption coils for LC1D096 ... D386, LC1DT206...DT406, LC1D2586				
U 0.7...1.25 Uc	BL	SL	DL	FL
Wide voltage range coils for LC1D406 ...956, LC1D400046 800086				
U 0.7...1.25 Uc	BW	SW	-	FW

[^0]
TeSys Switching
 TeSys D S207 - Contactors for railway applications

Product references

CAD326••

| Contactors for control circuit - connection by lugs | |
| :--- | :--- | :--- |
| Rated max
 operating current (le) | Composition
 Replace dots by coil voltage code
 (see chart below) |
| coil with | |
| surge suppressor | |

Coil voltage codes	$\mathbf{2 4}$	$\mathbf{7 2}$	$\mathbf{9 6}$	$\mathbf{1 1 0}$
DC Volts				
Standard coils for CAD326, CAD506	BD	SD		FD
U0.7..1.25 Uc				
Low consumption coils for CAD326, CAD506	BL	SL	DL	FL
U $0.7 \ldots 1.25$ Uc				

Instantaneous auxiliary contact blocks for connection by lugs ${ }^{(1)}$				
Clip-on mounting ${ }^{(2)}$	Number of contacts per block	Composition		Reference
		1	ψ	
Front	2	1	1	LADN116
		2	-	LADN206
		-	2	LADN026
	4	2	2	LADN226
		1	3	LADN136
		4	-	LADN406
		-	4	LADN046
		3	1	LADN316

Maximum number of auxiliary contacts that can be fitted

Contactors			Instantaneous auxiliary contact blocks		
Type	Number of poles and size		Side mounted	Front mounted	
				2 contacts	4 contacts
---	3P	LC1 D09...D38	-	1	or 1
		LC1 D80	-	or 1	or 1
	4P	LC1 DT20...DT40	-	1	or 1
		LC1 D80	-	and 1	or 1
LC ${ }^{(3)}$	3P	LC1 D09...D38	-	1	-
	4P	LC1 DT20...DT40	-	1	-

Bidirectional peak limiting diodes ${ }^{(1)}$

Protection provided by limiting the transient voltage to 2 Uc max.
Maximum reduction of transient voltage peaks.

Mounting	For use with contactor		Reference
	Rating	Type	
		V--	
Clip-on side mounting ${ }^{(2)}$	D09...D38 (3P)	24	LAD4TBDL
	DT20...DT40 (4P)	72	LAD4TSDL
		125	LAD4TGDL

(1) Add on auxiliary contacts and bidirectional peak limiting diodes compliancy level to EN 45545 is R22HL3.
(2) In order to install these accessories, the existing suppression device must first be removed. Clipping-on makes the electrical connection. The overrall size of the contactor remains unchanged.
(3) LC: Iow comsumption.

TeSys Switching

TeSys K S207 - Contactors for railway applications

Product references

LC1K12016••

LC1KT

CAK

3-pole contactors for Motor control - connection by lugs							
Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3			Rated operational current in AC-3 440 V up to	Instantaneous auxiliary contacts		Commercial reference Replace dots by coil voltage code (see chart below)	Weight
$\begin{aligned} & 220 \mathrm{~V} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{~V} \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 440 / 500 \mathrm{~V} \\ & 660 / 690 \mathrm{~V} \end{aligned}$			4		
kW	kW	kW	A				kg
1.5	2.2	3	6	1	-	LC1K06106••S207	0.235
				-	1	LC1K06016•*S207	0.235
2.2	4	4	9	1	-	LC1K09106••S207	0.235
				-	1	LC1K09016••S207	0.235
3	5.5	5.5 ($\leqslant 440$)	12	1	-	LC1K12106•eS207	0.235
		$4(\geqslant 480)$		-	1	LC1K12016•eS207	0.235

4 -pole contactors - connection by lugs				
Non inductive loads Category AC-1 Maximum current at $\left(\theta \leqslant 50^{\circ} \mathrm{C}\right)$	Number of poles	Instantaneous auxiliary contacts	Commercial reference Replace dots by coil voltage code (see chart below)	
A				
20	2	-	-	-

4 -pole contactors for Control circuit - connection by lugs			
Control circuit consumption	Auxiliary contacts	Commercial reference Replace dots by coil voltage code (see chart below)	
		4	CAK406••S207

Low consumption coil voltage code

Volts DC	$\mathbf{2 4}$	$\mathbf{7 2}$	$\mathbf{1 1 0}$
$\cup 0.7 \ldots . .1 .3$ Uc	BL	SL	FL

Instantaneous auxiliary contact blocks ${ }^{(1)}$
Recommended for standard applications, Clip-on front mounting, 1 block per contactor
Connection
Screw clamp terminals

(1) Add on auxiliary contacts compliancy level to EN 45545 is R22HL3.

TeSys Switching
 TeSys D S207 - Contactors for railway applications

Characteristics

3-pole contactor characteristics													
Contactor type			LC1D096	LC1D126	LC1D186	LC1D256	LC1D326	LC1D386	LC1D406	LC1D506	LC1D656	LC1D806	LC1D956
Rated operational current (le) (Ue $\leqslant 440 \mathrm{~V}$)	$\begin{aligned} & \text { In AC-3, } \\ & \theta \leqslant 60^{\circ} \mathrm{C} \end{aligned}$	A	9	12	18	25	32	38	40	50	65	80	95
	$\begin{aligned} & \text { In AC-1, } \\ & \theta \leqslant 60^{\circ} \mathrm{C} \end{aligned}$	A	25	25	32	40	50	50	60	80	80	125	125
Rated operational voltage (Ue)	Up to	V	690	690	690	690	690	690	1000	1000	1000	1000	1000
Frequency limits	Of the operational current	Hz	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400
Conventional thermal current (Ith)	$\theta \leqslant 60{ }^{\circ} \mathrm{C}$	A	25	25	32	40	50	50	60	80	80	125	125
Rated making capacity (440 V)	Conforming to IEC 60947	A	250	250	300	450	550	550	800	900	1000	1100	1100
Rated breaking capacity (440 V)	Conforming to IEC 60947	A	250	250	300	450	550	550	800	900	1000	1100	1100
Permissible short time rating No current flowing for preceding 15 minutes with $\theta \leqslant 40^{\circ} \mathrm{C}$	For 1 s	A	210	210	240	380	430	430	720	810	900	990	1100
	For 10 s	A	105	105	145	240	260	310	320	400	520	640	800
	For 1 min	A	61	61	84	120	138	150	165	208	260	320	400
	For 10 min	A	30	30	40	50	60	60	72	84	110	135	135
Fuse protection against shortcircuits ($\mathrm{U} \leqslant 690 \mathrm{~V}$)	Without type 1 thermal	A	25	40	50	63	63	63	80	100	160	200	200
	overload type 2 relay, gG fuse	A	20	25	35	40	63	63	80	100	125	160	160
Average impedance per pole	At lth and 50 Hz	$\mathrm{m} \Omega$	2.5	2.5	2.5	2	2	2	1.5	1.5	1	0,8	0.8
Power dissipation per pole for the above operational currents	AC-3	W	0.20	0.36	0.8	1.25	2	3	2.4	3.7	4.2	5.1	7.2
	AC-1	W	1.56	1.56	2.5	3.2	5	5	5.4	9.6	6.4	12.5	12.5

TeSys Switching

TeSys D S207-Contactors for railway applications

Characteristics

4-pole contactor characteristics								
Contactor type			LC1D0986 LC1DT206	LC1D1286 LC1DT256	LC1D1886 LC1DT326	LC1D2586 LC1DT406	$\begin{aligned} & \text { LC1D400046 } \\ & \text { LC1D400086 } \end{aligned}$	LC1D800046 LC1D800086
Rated operational current (le) ($\mathrm{Ue} \leqslant 440 \mathrm{~V}$)	$\begin{aligned} & \ln \mathrm{AC}-3, \\ & \theta \leqslant 60^{\circ} \mathrm{C} \end{aligned}$	A	9	12	18	25	$40{ }^{(1)}$	$80^{(2)}$
	$\begin{aligned} & \ln \mathrm{AC}-1, \\ & \theta \leqslant 60^{\circ} \mathrm{C} \end{aligned}$	A	20	25	32	40	60	125
Rated operational voltage (Ue)	Up to	V	690	690	690	690	690	1000
Frequency limits	Of the operational current	Hz	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400
Conventional thermal current (lth)	$\theta \leqslant 60^{\circ} \mathrm{C}$	A	20	25	32	40	60	125
Rated making capacity (440 V)	Conforming to IEC 60947	A	250	250	300	450	800	1100
Rated breaking capacity (440 V)	Conforming to IEC 60947	A	250	250	300	450	800	1100
Permissible short time rating No current flowing for preceding 15 minutes with $\theta \leqslant 40^{\circ} \mathrm{C}$	For 1 s	A	210	210	240	380	720	990
	For 10 s	A	105	105	145	240	320	640
	For 1 min	A	61	61	84	120	165	320
	For 10 min	A	30	30	40	50	72	135
Fuse protection against shortcircuits ($\mathrm{U} \leqslant 690 \mathrm{~V}$)	Without type 1 thermal	A	25	40	50	63	80	200
	overload type 2 relay, gG fuse	A	20	25	35	40	80	160
Average impedance per pole	At Ith and 50 Hz	$\mathrm{m} \Omega$	2.5	2.5	2.5	2	1.5	0,8
Power dissipation per pole for the above operational currents	AC-3	W	0.20	0.36	0.8	1.25	2.4	5.1
	AC-1	W	1.56	1.56	2.5	3.2	5.4	12.5

(1) For LC1D400046 only, no AC-3 for LC1D400086.
(2) For LC1D800046 only, no AC-3 for LC1D800086.

TeSys Switching
 TeSys D S207 - Contactors for railway applications

Characteristics

[^1]
TeSys Switching
 TeSys D S207 - Contactors for railway applications

Characteristics

Power circuit connections								
Contactor type		LC1D096, LC1D126, LC1D186, LC1DT206, LC1DT256	LC1D1886 LC1DT326	LC1D256 LC1D326 LC1D386	LC1D2586 LC1DT406	LC1D406, LC1D4000	LC1D506 LC1D656 LC1D6500	LC1D806 LC1D956 LC1D800046 LC1D800086
Connection by bars or lugs								
Lug external \varnothing	mm	8	9	12	9	13	16	17
\varnothing of screw	mm	M3.5		M4	M3.5	M5	M6	M6
Screwdriver Philips		N ${ }^{\circ} 2$		$\mathrm{N}^{\circ} 2$	$\mathrm{N}^{\circ} 2$	$\mathrm{N}^{\circ} 2$	$\mathrm{N}^{\circ} 3$	-
Flat screwdriver \varnothing		$\varnothing 6$		$\varnothing 6$	$\varnothing 6$	Ø8	Ø8	Ø8
Key for hexagonal headed screw		-		-	-	-	-	10
Tightening torque	N.m	1.7		2.5	1.8	2.5	2.5	5

Control circuit connections

Connection by bars or lugs

Lug external \varnothing		mm	8
\varnothing of screw		$\mathbf{m m}$	M3.5
Screwdriver	Philips		$\mathrm{N}^{\circ} 2$
	Flat screwdriver \varnothing		$\varnothing 6$
Tightening torque		N.m	1.7

$\leqslant 60^{\circ} \mathrm{C}$
(1) The operating times depend on the type of contactor electromagnet and its control mode.

The closing time " C " is measured from the moment the coil supply is switched on to initial contact of the main poles.
The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separate.
Characteristics of auxiliary contacts incorporated in the contactor
$\left.\begin{array}{ll|l|l}\hline \begin{array}{l}\text { Mechanically linked } \\ \text { contacts }\end{array} & \text { Conforming to IEC 60947-5-1 }\end{array}\right)$ E

Each TeSys D NO/NC embedded auxilliary contacts are certified 'mechanicaly linked'.
All TeSys D NC auxilliary contacts are 'miror' certified and can be connected to a safety module.
690
690
current (Ith) $\leqslant 60^{\circ} \mathrm{C}$

TeSys Switching
 TeSys D S207 - Contactors for railway applications

Dimensions

LC1D09...D18 (3-pole)

LC1D25...D38 (3-pole)

LC1DT20....DT40, LC1D098, D128, D188, D258 (4-poles)

$\left.\begin{array}{lllll}\text { LC1 } & \text { D09...D18 } & \text { D25...D38 } & \text { DT20 and DT25 } & \\ & & & \text { DT32 and DT40 } \\ \text { D098 and D128 }\end{array}\right]$

LC1D406..S207, LC1D506..S207, LC1D656..S207 (3-pole)

LC1D400046..S207 (3-pole), LC1D400086..S207 (4-pole)

	LC1D406..S207, LC1D506..S207, LC1D656..S207	LC1D806..S207, LC1D956..S207	LC1D400046..S207	LC1D400086..S207	LC1D800046	LC1D800086
c without cover or add-on blocks	171	181	171	182	181	196
with cover, without add-on blocks	176	186	-	-	-	-
c1 with LAD N (1 contact)	196	204	196	196	204	204
with LAD N or C (2 or 4 contacts)	202	210	202	202	210	210
c2 with LA6 DK10	213	221	213	213	221	221
c3 with LAD T, R, S	221	229	221	221	229	229
with LAD T, R, S and sealing cover	225	233	225	225	233	233

LC1D8000046..S207, LC1D800086..S207 (4-pole)

LC1D806..S207, LC1D956..S207 (3-pole)

TeSys Switching
 TeSys D S207 - Contactors for railway applications

Schemes

Contactors
3-pole contactors LC1D096 ... LC1D956

4-pole contactors
LC1DT206... DT406
LC1D0986....D2586
LC1D400046, LC1D800046
LC1D400086, LC1D800086

TeSys Switching

TeSys K S207 - Contactors for railway applications

Characteristics

Environment characteristics Contactor type LC1K Conforming to standards Authorized operating positions \quad

TeSys Switching
 TeSys K S207 - Contactors for railway applications

Characteristics

Pole characteristics						
Type				LC1K06	LC1K09, LC1KT09, LC1KT20	LC1K12
Conventional thermal current (Ith)	For ambient temperature$\leqslant 50^{\circ} \mathrm{C}$		A	20		
Rated operational frequency			Hz	50/60		
Frequency limits of the operational current			Hz	Up to 400		
Rated operational voltage (Ue)			V	690		
Rated making capacity	I rms conforming to NF C 63110 and IEC 60947		A	110	110	144
Rated breaking capacity	I rms conforming to NF C 63110 and IEC 60947	$220 / 230 \mathrm{~V}$	A	110	110	-
		$380 / 400 \mathrm{~V}$	A	110	110	-
		415 V	A	110	110	-
		440 V	A	110	110	110
		500 V	A	80	80	80
		660/690 V	A	70	70	70
Permissible short time rating	In free air for a time "t" from cold state $\left(\theta \leqslant 50^{\circ} \mathrm{C}\right)$	1 s	A	90	90	115
		5 s	A	85	85	105
		10 s	A	80	80	100
		30 s	A	60	60	75
		1 min	A	45	45	55
		3 min	A	40	40	50
		$\geqslant 15$ min	A	20	20	25
Short-circuit protection	gG fuse $\mathrm{U} \leqslant 440 \mathrm{~V}$		A	25		
Average impedance per pole	At lth and 50 Hz		$\mathrm{m} \Omega$	3		
Use in category AC-1 resistive circuits, heating, lighting (Ue \leqslant 440 V)	Maximum rated operational current for a temperature $\leqslant 50^{\circ} \mathrm{C}$		A	20		
	Maximum rated operational current for a temperature $\leqslant 70^{\circ} \mathrm{C}$		A	16 for Ue only		
	Rated operational current limits in relation to the on-load factor and operating frequency			On-load factor		90 \%
			A	300 operating cycles/hour		13
			A	120 operating cycles/hour		15
			A	30 operating cycles/hour		19
	Increase in rated operational current by paralleling of poles			Apply the following coefficients to the above currents; these coefficients take into account an often unbalanced distribution of current between the poles		
				2 poles in parallel: $\mathrm{K}=1.60$		
				3 poles in parallel: $K=2.25$		
				4 poles in parallel: $\mathrm{K}=2.80$		
Use in category AC-3 squirrel cage motors	Operational power according to the voltage. Voltage 50 or 60 Hz	115 V single-ph.	kW	0.37	0.55	-
		220 V single-ph.	kW	0.75	1.1	-
		220/230 V 3-ph.	kW	1.5	2.2	3
		380/415V3-ph.	kW	2.2	4	5.5
		$440 / 480 \mathrm{~V} 3$-ph.	kW	3	4	5.5/4 (480)
		500/600 V3-ph.	kW	3	4	4
		660/690 V 3-ph.	kW	3	4	4
	Maximum operating rate (in operating cycles/hour in relation to \% of rated power)			Op. cycles/h		600
				Power		100 \%

TeSys Switching
 TeSys K S207 - Contactors for railway applications

Characteristics

Control circuit characteristics				
Type			LC1K, LC1KT	CAK
Rated control circuit voltage (U)		V DC	24... 110	24... 110
Control voltage limits ($\leqslant 50^{\circ} \mathrm{C}$) single voltage coil	Operation		0.7...1.30 Uc	0.7...1.3 Uc
	Drop-out		$\geqslant 0.10$ Uc	$\leqslant 0.1$ Uc
Average consumption at $20^{\circ} \mathrm{C}$ and at Uc	Inrush		1.8 W	1.8 W
	Sealed		1.8 W	1.8 W
Heat dissipation		W	1.8	1.8
Operating time at $20^{\circ} \mathrm{C}$ and at Uc				
Between coil energisation and:	opening of the N / C contacts	ms	25... 35	25... 35
	closing of the N/O contacts	ms	30... 40	30... 40
Between coil de-energisation and:	opening of the N/O contacts	ms	10... 20	10... 20
	closing of the N/C contacts	ms	15... 25	15... 25
Maximum immunity to microbreaks		ms	2	2
Maximum operating rate	In operating cycles per hour		3600	6000
Mechanical durability at Uc In millions of operating cycles			30	30

TeSys Switching
 TeSys K S207 - Contactors for railway applications

Characteristics

LC1K auxiliary contacts, CAK				
Number of auxiliary contacts	On LP•K 3-pole			1
Rated operational voltage (Ue)	Up to		V	690
Rated insulation voltage (Ui)	Conforming to BS 5424		V	690
	Conforming to IEC 60947		V	690
	Conforming to VDE 0110 group C		V	750
	Conforming to CSA C 22-2 $\mathrm{n}^{\circ} 14$		V	600
Conventional thermal current (lth)	For ambient temperature $\leqslant 50^{\circ} \mathrm{C}$		A	10
Frequency of the operational current			Hz	Up to 400
Minimum switching capacity	\underline{U} min (DIN 19 240)		V	17
	1 min		mA	5
Short-circuit protection	Conforming to IEC 60947 and VDE 0660, gG fuse		A	10
Rated making capacity	Conforming to IEC 60947	1 rms	A	110
Short-time rating	Permissible for	1 s	A	80
		500 ms	A	90
		100 ms	A	110

Operational power of contacts conforming to IEC 60947
a.c. supply, category AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the power broken $(\cos \varphi 0.4)$.

Operating cycles				$\mathbf{1 1 0 /}$	$\mathbf{2 2 0 /}$	$\mathbf{3 8 0 /}$		$\mathbf{6 0 0 /}$
	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 7}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 9 0}$
million operating cycles	VA	48	96	240	440	800	880	1200
3 million operating cycles	VA	17	34	86	158	288	317	500
10 million operating cycles	VA	7	14	36	66	120	132	200
Occasional making capacity	VA	1000	2050	5000	10000	14000	13000	9000

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

Operating cycles							
	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
1 million operating cycles	W	120	80	60	52	51	50
3 million operating cycles	W	55	38	30	28	26	25
10 million operating cycles	W	15	11	9	8	7	6
Occasional making capacity	W	720	600	400	300	230	200

1. Breaking limit of contacts valid for:

■ maximum of 50 operating cycles at 10 s intervals (power broken = making current $x \cos \varphi 0.7$).
2. Electrical durability of contacts for:

■ 1 million operating cycles (2a)
■ 3 million operating cycles (2b)
■ 10 million operating cycles (2c).
3. Breaking limit of contacts valid for:

■ maximum of 20 operating cycles at 10 s intervals with current passing for 0.5 s per operating cycle.
4. Thermal limit.

TeSys Switching

TeSys K S207 - Contactors for railway applications
Dimensions and schemes

Contactors
 LC1K, LC1KT, CAK

On panel

3-pole contactors

Coil diagram with integral suppression device LC1K, LC1KT
$3 P+N / O$
$3 P+N / C$

Coil diagram with integral suppression device LC1K, LC1KT

Coil diagram - with suppression device CAK

CAK - 4 poles contactors for control circuits $2 N / O+2 N / C$

An industry leading portfolio of offers delivering sustainable value

S
 Green Premium

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading \# of PEP's*
- Circularity instructions

Discover what we mean by green Check your products!

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.
CO_{2} and P\&L impact through... Resource Performance
Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_{2} emissions.

Cost of ownership optimization through... Circular Performance We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide IoT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance
Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation
Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

Life Is Un
 Schneider $\int=$ Electric

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com

[^0]: Characteristics:

[^1]: (1) When mounting on a vertical rail, use a stop.
 (2) Without modification of power contact states, in the most unfavourable direction (coil energised at Ue)

